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The influence of stabilizing buoyancy forces on the spectral characteristics and 
spectral energy transfer of grid-generated turbulence was studied in a ten-layer 
closed-loop stratified water channel. The results are compared to the limiting ideal 
cases of the three-dimensional turbulence and two-dimensional turbulence theories. 
The velocity power spectra evolve from a classical isotropic shape to a shape of 
almost k P  after the suppression of the net vertical mixing. This final spectral shape 
is rather different from the k-3 to k-4 predicted by the theory of two-dimensional 
turbulence and could result from the interaction between small-scale internal waves 
and quasi-two-dimensional turbulent structures as well as some Doppler shift of 
advected waves. Several lengthscales are derived from the cospectra of the vertical 
velocity and density fluctuations and compared with the buoyancy, overturning and 
viscous lengthscales measured in previous studies, e.g. Stillinger, Helland & Van Atta 
(1983) and Itsweire, Helland & Van Atta (1986). The smallest turbulent scale, 
defined when the buoyancy flux goes to zero, can be related to  the peak of the 
cospectra of the buoyancy flux. This new relationship can be used t o  provide a 
measure of the smallest turbulent scale in cases where the buoyancy flux never goes 
to zero, i.e. a growing turbulent stratified shear flow. Finally, the one-dimensional 
energy transfer term computed from the bispectra shows evidence of a reverse energy 
cascade from the small scales to the large scales far from the grid where buoyancy 
forces dominate inertial forces. The observed reverse energy transfer could be 
produced by the development of quasi- two-dimensional eddies as the original three- 
dimensional turbulence collapses. 

1. Introduction 
Recent observations in the atmosphere and the oceans shows large isolated two- 

dimensional vortex-like structures. Such eddies can result from the Coriolis effects as 
well as the large ratio between horizontal and vertical dimensions of the atmosphere 
or the oceans. Two-dimensional eddies can also be obtained in laboratory geophysical 
flows such as very stably stratified flows (Lin & Pao 1979), fast rotating flows 
(Hopfinger, Griffiths & Mory 1983) or magnetohydrodynamic (MHD) flows 
(Sommeria & Moreau 1982). Some of the large-scale coherent structures such as those 
formed in a mixing layer (Brownand & Winant 1973; Koop & Browand 1979) also 
appear to be two-dimensional, Several questions arise: are such eddies truly two- 
dimensional, and how is their evolution coupled to smaller three-dimensional 
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turbulent scales? It is also likely that in most geophysical flows there will be an 
evolution from a three-dimensional turbulent flow with or without waves (internal or 
Rossby waves for example) to a quasi-two-dimensional flow as growing turbulent 
scales become limited in size by external constraints (physical dimension, buoyancy 
effects, electromagnetic forces, Coriolis forces or any combination of these). Several 
theories such as the test field model (TFM, Kraichnan 1971) and the eddy-damped 
quasi-normal Markovian theory (EDQNM, Orszag 1974) as well as recent high- 
resolution direct simulations (Herring et al. 1974; Herring & McWilliams 1985) 
provide a framework for a purely two-dimensional turbulence and its spectral 
properties. Both TFM and EDQNM show that in the inertial-diffusive region, the 
concept of enstrophy cascade produces an energy spectrum falling off like kP3 while 
the corresponding scalar spectrum is k-'. Both of these spectral shapes have been 
observed in MHD turbulence (Sommeria 1983) and fast rotating flows (Hopfinger 
et al. 1983). Gower, Denman & Holyer (1980) reported a kP3 spectra from surface 
phytoplankton concentration measurements in the ocean. These observations and 
temperature (scalar) measurements in the ocean seem to indicate that, in the 
enstrophy cascade region, the energy spectra would have a steeper slope (kP4 to kP5) 
than the k-3 slope predicted by the theories. Herring & McWilliams (1985) numerical 
experiments showed that in a spin-down problem (no energy input at the large scales) 
the two-dimensional flow would evolve into a small number of independent vortices. 
This spatial interrnittency is characterized by a k-4 slope in the entrophy cascade 
region of the energy spectrum. 

Before one tries to compare laboratory experiments to various theories, i t  is 
necessary to first determine a t  what point in the evolution of the flow these theories 
might apply. Let us consider the case of strongly stratified turbulent flows, which is 
the scope of this paper. Gibson (1980), Stillinger et al. ( 1 9 8 3 ~ )  and Stillinger, Helland 
& Van Atta (1983b) (the latter two are hereinafter referred to as SHV) independently 
derived lengthscale arguments to characterize the state of fluid motion, i.e. isotropic 
turbulence or fossil turbulence and internal waves. Many of the previous laboratory 
experiments in stably stratified flows did not include simultaneous single-point 
measurements of the vertical velocity and density (Lin & Veenhuizen 1975; Dickey 
& Mellor 1980; Lange 1982; Britter et al. 1983). Only recently, SHV and Itsweire, 
Helland & Van Atta (1986, hereinafter referred to as IHV) made such measurements 
and estimated the buoyancy flux ( g / p ) p w .  Both SHV and IHV used, for the first 
time, the buoyancy flux going to zero as a criterion for the extinction of overturning 
turbulence. SHV followed the idea advanced by Stewart (1969) that linear internal 
waves have their vertical velocity w and density fluctuation p in quadrature and 
therefore do not contribute to the buoyancy flux. Consequently, the buoyancy flux 
is assumed to come only from turbulent contributions and when turbulent events are 
suppressed by buoyancy, ( g / p )  p goes to zero. This criterion is an approximation for 
the extinction of turbulence (in the three-dimensional, isotropic Kolmogorovian 
sense) since nonlinear internal waves, fossil vorticity turbulence (Gibson 1980) and 
large-scale restratification can produce some vertical mixing. 

The prime objectives of this study are to investigate more fully the spectral 
characteristics of the buoyancy flux and to examine energy transfer properties of the 
downstream velocity component. Some preliminary results for the buoyancy flux 
spectra were presented in previous papers (Van Atta, Helland & Itsweire 1984; 
IHV). Energy transfer is estimated by using third-order bispectral techniques a t  
various downstream distances from a turbulence generating grid ; of special interest 
is the possibility of detecting by statistical methods a reversal in the direction of 
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spectral energy transfer after the collapse of three-dimensional turbulence into 
a state of quasi-two-dimensional motions (two-dimensional turbulence). The 
experience acquired from a number of earlier experiments (e.g. SHV and IHV) 
provided critical information used to guide the choice of stratification, grid design, 
measurement locations and record duration to best achieve these objectives. 

A number of investigators have offered estimates of the buoyancy flux in terms of 
the mixing effciency of the flow using various eddy diffusivity models (Weinstock 
1978; Osborn 1980; Pearson, Puttock & Hunt 1983). Rohr, Itsweire & Van Atta 
(1984) calculated the mixing efficiency of the flow from direct measurements of the 
buoyancy flux and the dissipation rate e .  They found that the mixing efficiency 
depended on the ratio between the buoyancy and inertial forces. It is very interesting 
to look a t  the wavenumber distribution of the buoyancy flux in order to  assess how 
much mixing is due to turbulence, and how much is due to waves and fossil vorticity 
turbulence. Itsweire & Helland (1985) reported some preliminary results on the 
cospectra of p and w. Their results from the data of SHV show that up to 10 YO of the 
mixing can come from non-turbulent scales. 

Third-order spectra, known as bispectra can be useful to examine nonlinear 
interactions in turbulent flows. Lii, Rosenblatt & Van Atta (1976) and Helland, Lii 
& Rosenblatt (1979) showed that accurate bispectral estimates could provide insight 
in the analysis of spectral energy transfer in three-dimensional turbulence. Lii et al. 
(1976) concluded that both the spectral energy transfer due to triadic interactions 
and the rate of vorticity production were non-local, meaning that, on the average, 
vortices of broadly different scales interacted. Other approaches (Wilson 1974 ; Van 
Atta 1979) combined bispectral estimates to compute the local one-dimensional 
energy transfer due to wavenumber interactions. These calculations showed that, in 
three-dimensional turbulence, energy cascades from the large to small scales as could 
be expected. In a stratified environment, if the turbulence collapses into quasi-two- 
dimensional turbulence, the energy cascade could be reversed as predicted by two- 
dimensional turbulence simulations (Herring et al. 1974). However, recent direct 
numerical simulations of stratified turbulence (MBtais 6 Herring 1989) are 
inconclusive in this respect. 

Section 2 describes the experimental conditions for the new data sets and the 
UCSD water channel facility. A brief view of the stratified turbulence lengthscale 
model is presented in $3. The theoretical derivations of the one-dimensional energy 
transfer from the bispectrum are shown in $4. Section 5 compares different methods 
for indirectly estimating the buoyancy flux with direct measurements and examines 
the spectral distribution of the buoyancy flux cospectra. Section 6 shows the 
evolution of the shapes of the velocity and density power spectra with increasing 
buoyancy effects and compares them with theoretical predictions for two- 
dimensional turbulence. Third-order spectra or bispectra are presented in $7 .  
Finally, one-dimensional energy transfer estimates calculated from the bispectra and 
their implications on the evolution of the turbulence in stratified flows are discussed 
in $8. 

2. Experiments 
The present experiments were conducted in the ten-layer closed-loop salt-stratified 

water channel in the Department of Applied Mechanics and Engineering Sciences at 
the University of California, San Diego. The general layout of the facility and the 
instrumentation has been described in great detail by Stillinger et aZ. (1983a). Only 
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Experiment Grid type M (cm) Number of records Record length (9) 

R53 Biplane grid 1.905 24 8 
R64 Vertical rods 3.81 50 16 
R65 Vertical rods 3.81 50 16 

TABLE 1. Experimental parameters for the two stratified experiments (R53 and R64) and the 
unstratified experiment (R65) 

modifications in the tunnel and changes in the data acquisition parameters will be 
discussed in this paper. 

In addition to the data of SHV and IHV three new experiments, R53, R64 and 
R65, will be examined. We used the results of SHV and IHV to limit our 
measurements to critical stations downstream from the grid, i.e. before the onset of 
buoyancy effects, in the buoyancy-dominated region and after the extinction of 
three-dimensional overturning events. 

The number of data records a t  each measurement location was increased from 6 to 
50 in order to  attain a good resolution of the cospectra and bispectra. In  experiments 
R64 and R65 the record length was doubled to 16 s from the earlier value of 8 s. Also 
the small mesh (M = 1.905 cm) grid of R23, R52 and R53 was replaced by an array 
of vertical rods of diameter d = 0.636 cm and horizontal spacing M = 3.81 cm. The 
horizontal rods present in R36 and R37 were removed in order to further reduce the 
generation of an internal wave field and increase the initial ratio between the root- 
mean-square horizontal velocity u' and the root-mean-square vertical velocity w'. By 
these means, we hoped to promote the generation of a quasi-two-dimensional 
turbulence closer to  the ideal limit of two-dimensional turbulence. Only these last 
two experiments (R64 and R65) were used to  compute the bispectra and the deduced 
one-dimensional energy transfer terms. The experimental parameters of the various 
experiments are summarized in table 1. 

The instrumentation and experimental arrangement are identical to previous work 
in the UCSD water channel (SHV; Rohr et al. 1984; and IHV). The calibration 
procedures for the x -film sensor and the 4-wire microscale conductivity instrument 
(MSCI, see Head 1983) are described in detail in Stillinger et al. ( 1 9 8 3 ~ ) .  The water 
channel was controlled by the laboratory LSI 11/23 microcomputer. This computer 
equipped with a 14-bit AID converter and ten channels of sample-and-hold circuitry 
was also used to digitize the data and perform all the calibration computations and 
data analysis. 

3. Lengthscale models of stratified turbulence 
The dynamics of stably stratified turbulent flows are governed by the relative 

ratios among three different forces, i.e. buoyancy, inertial and viscous forces. 
Buoyancy forces will create an upper ceiling for the growth of turbulent eddies, whiie 
viscous forces will limit the size of the smallest overturning eddies. Gibson (1980, 
1986) predicted the range of possible overturning turbulent scales (in the three- 
dimensional, Kolmogorovian sense) to be 

1.2L0 2 h 2 15L,, (1)  

where Lo = (c/N3)4 is the Ozmidov scale (Dougherty 1961; Ozmidov 1965) 
representing the action of buoyancy forces, L, = (v3/s)' the Kolmogorov scale 
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indicating the viscous effects, and h a turbulent wavelength. Independently, 
Stillinger (1981) and SHV found experimentally that the range of possible turbulent 
scales for the grid-generated turbulence in their stratified water channel was : 

1.4Lo 2 12 15.5LK. (2) 

They defined the largest turbulent scale (in a statistical sense) of their flow as twice 
the turbulent scale L, first introduced by Ellison (1957) : 

-P’ L, = - ap/az (3) 

where p’ is the root-mean-square (r.m.s.) density fluctuation. SHV used simple solid- 
body rotation to model the largest turbulent eddy in terms of L,. Such a 
representation is physically oversimplified but seems to give a good estimate of the 
largest turbulent eddy size in their experiments (Itsweire 1984). 

The result (2) was recently refined by IHV who noted some dependence of the 
proportionality factors on the grid mesh size. They found that the onset of 
buoyancy effects (beginning of fossilization) occur when 

L, = o.85L0 (4) 

Lo = 7.6LK for M = 1.905 cm ( 5 a )  

or Lo = 9.9LK for M = 3.81 cm. (5b) 

and that the turbulence becomes extinct (complete fossilization) when 

The uncertainty in the ratios between the various lengthscales is estimated to be 
around 6 YO. 

The onset of buoyancy effects (or beginning of fossilization, Gibson 1980) is taken 
to be a t  the z /M station in the tunnel where the evolution of the r.m.s. density 
fluctuation p’ departs from the passive-scalar growth law of Montgomery (19741, 
because buoyancy is expected to limit the growth of turbulent scales. 

For the extinction of all overturning turbulent motions (or complete fossilization, 
Gibson 1980), SHV followed Stewart’s (1969) ideas that for a linear internal wave 
field the vertical velocity and the density fluctuation are 90” out of phase, and thus 
the buoyancy flux ( g / p ) p  is zero and no vertical mixing takes place. This criterion 
pw x 0 is rigorously true only for linear waves and may on average be valid for 
weakly nonlinear waves. At the x/M station where pw x 0, SHV and IHV determined 
the ratio between the Kolmogorov scale L, and the smallest overturning scale of the 
flow (see ( 5 ) ) .  

4. Theoretical derivations for the energy transfer calculations 

component u : 
Let us consider the Navier-Stokes equation for the longitudinal velocity 

ap+ VVZU. (6) 
au au 
at ax P ax 
-+ u-+ ... =--- 

Only the first two terms are considered through their complex Fourier series. The 
complex Fourier representation of u(x, t ) ,  with respect to the longitudinal direction 
x, is defined as 

u(x,t) = AkXF,(k,t)eik”, k = (p-l)Ak, p = 1 , .  .. , (+n+ l) ,  (7) 
k 
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where time t is included temporarily in Fu(k, t )  to indicate that the complex Fourier 
coefficients are functions of only time and not space. The record length is taken to 
be nAx = l/Ak. After substitution of the Fourier series for u(x, t ) ,  (6) becomes 

a a Ak - Z Fu(k) elkz + (Ak)2 Z Fu(m) eimz - ZF’(k) eikz + . . . , 
at k m ax k 

where separate wavenumbers k and m have been used for the two velocities in the 
second term. Since we are ultimately seeking the interaction among different 
longitudinal wavenumbers, we multiply (8) by the Fourier component F,(Z) e’”, 
where Z is a third wavenumber: 

(9) 
a a AkFu(Z) eizx - X F,(k) eikz + (Ak)2Fu(Z) eizz Z F,(m) eimz - I: F,(k) eikz + . . . . 
at k m ax k 

The derivative a/ax of the second term can be expressed as 

(10) 
a 
- X Fu(k) eikx = C ikFu(k) eikx. 
ax k k 

Then, after collecting the exponentials inside the summations, (9) becomes 

(Ak)2C C ikF,(Z)F,(m)F,(k) ei(i+m+k)x+ .... (11) 
a AkFu(Z) - Z F,( k) ei(E+k)z + 
at k n a k  

Taking the average over the record length nAx, dividing by 2n: and using the 
orthogonality condition 

nAx 

7cn6Z+k (12) c ei(l+k)z = 2 
0 

(1 1) becomes 

The orthogonality condition at+, requires that I + k = 0 for the first term to be non- 
zero, and 6,+,+, requires that I + m + k = 0 for the second term to be non-zero. Using 
the definitions of the one-dimensional spectrum 

E,,u(Z) AkFu(Z)Fu(k)61+k, Z+k = 0 

= AkFu(Z)B’2(l) = Ak(Fu(Z)12 ( 14) 

Ru,u,w,(Z,m,k) = AkFu(Z)Fu(m)F,(k), Z+m+k = 0, (15) 

and the one-dimensional bispectrum of the longitudinal velocity component 

and applying the Hermitian symmetry F,( -1) = Ft(Z), where F: is the complex 
conjugate of F,, (13) becomes 

a -[~E,,,(Z)]+AkCCikBU,,,,(I,m,k)+ ..., Z+m+k = O .  
at k m  

If the summations over wavenumbers k and m are performed, we are left with an 
equation in Z that  is a one-dimensional version of the usual three-dimensional energy 
transfer equation. We are more interested in the interactions between wavenumbers 
Z and k. Choosing these two wavenumbers determines the value of the third 
wavenumber m = - 1 - k. This approach requires that, for each pair (I, k), we sum 
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over all possible values of wavenumber m as required by the inner summation in (16). 
We define the quantity S ( k ;  1) by 

S(k;l)  = AkRe[ik C Fu(l)Fu(m)Fu(k)] = Re[ik C Bu,u,u( l ,m,  k)] 
m=-l-k m=-l-k 

= - k  C Im[Bu,u,u( l jmjk)l .  (17) 

The physical meaning of the S(k; 1)-spectrum is indicated by the Navier-Stokes 
equation to  be the net transfer of energy between wavenumber I and wavenumber k: 
through triadic interactions. Equation (16) can be rewritten as 

m--1-k 

The first term of the right-hand side of (18) can be written in terms of a one- 
dimensional net transfer term T,(l) for the longitudinal velocity component u : 

Tu(l) = AkCS(k;l). (19) 
k 

By examining the implications of the orthogonality constraint I + m + k = 0, given 
selected values of I and k, we can determine the possible values of wavenumber m. 
Recall that these wavenumbers are purely one-dimensional, so that there are no 
vector triangles to consider as would be the case for the full three-dimensional 
transfer term. Since 1, m, k can be of either sign, the summation over m can be a t  most 
over one term unless we ignore the signs in the summation. This is the right approach 
to consider if one only needs the wavenumber magnitudes, not their directions. Thus 
the summation will reduce to two terms for any choice of 1 and k where 1 > 0. The 
analysis can be limited to the right half-plane (1 > 0) because the Hermitian 
symmetry property B( -1 ,  -m, - k) = B*(l, m, k) of the bispectrum of a real time 
series implies that the left-half-plane contribution equals that of the right half-plane. 

If we now redefine the three wavenumber symbols as positive scalars without 
their sign, the orthogonality condition over the right half-(1, m)-plane can then be 
expressed as 

The sum I + m + k  is > O  since all three wavenumbers are positive by our new 
restrictions on the definitions of 1, m, k. By considering all possible sign combinations 
of m and k with 1 > 0, we can construct only three types of wavenumber interactions 
(combinations of I ,  m, k which sum to 0). 

This interaction corresponds to the bispectrum Buvu*u(Z, -m, k) with m = I + k ,  
k > 0 or, after expressing m in terms of 1 and k,Bu,u,u(Z, -(Z+k), k). Recall that all 
wavenumbers are now positive and that the signs are carried explicitly everywhere. 

This interaction corresponds to the bispectrum Bu, u .  u ( l ,  -m, - k) with m = 1 - k, 
k < I or, after expressing m in terms of I and k, Bu, u ,  = ( l ,  - (1- k),  k).  The restriction 
that k < 1 is required to keep m > 0. 

This interaction corresponds to the bispectrum Buv u. u ( l ,  m, - k)  with m = k-1, 
k > 1 or, after expressing m in terms of I and k,Bu9u,u(l ,  k-I, k).  

l f m f k  = 0. (20) 

Type 1 :  1-m+k = 0 

Type 2 :  Z-m-k = 0 

Type 3 :  l+m-k = 0 
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The three types of interaction are numbered identically to the terms that Wilson 
(1974) derived independently. The three interactions can be combined into one 
expression for X( k ; 1)  : 

(21) 
-Re[ikB,,,,,(l, -(Z-k), -k)], k < I 
-Re[ikB,,,,,(Z,k-l, -k)], k > I, S(k;Z) = Re[ikB,,.,,(I, -(Z+k),k)] 

where Z,m,k are all positive scalars. The sign of the k-factor in front of each 
bispectrum follows the sign of its third wavenumber because of the derivative a/ax. 
We can rewrite (21) in terms of the imaginary part of the bispectrum: 

By using the symmetry properties of the bispectrum (Lii & Helland 1981), the 
bispectrum in the lower-right quadrant (terms 1 and 2) can be mapped into the 
bispectrum defined in the upper-right quadrant. Details of the transformations for 
the present case are shown in Appendix A. After the transformations, (22) becomes 

where the explicit third wavenumber has been dropped. This expression for S ( k  ; 1)  is 
different from the one in Helland, Itsweire & Lii (1985), which is incorrect. 

Finally if we were to sum S ( k ;  1) of (17) over all positive k and 1 we obtain 

au 

ax Z k  1 

~ ~ - = 2 ( h k ) ~ C C S ( k , l )  = 2AkCT,(I), (24) 

where the factor of 2 accounts for the contribution from the left half-plane. 

5. Estimates and spectral distribution of the buoyancy flux 
5.1. Estimates of the buoyancy flux 

Measurements of the vertical mass flux or buoyancy flux in geophysical flows are 
hard to achieve because they require simultaneous single-point measurements of the 
vertical velocity and the conductivity or temperature fluctuations at scales on the 
order of several millimetres. Consequently several methods referred to  as dissipation 
techniques requiring various assumptions have been developed to indirectly estimate 
the buoyancy flux for given atmospheric and oceanic situations. The common 
assumption is that the flow is approximately in steady state and that the kinetic 
energy dissipation rate s can be obtained from small-scale velocity shear 
measurements. Osborn (1980) made some additional assumptions about the energy 
partitioning between potential kinetic energies, i.e. a t  equilibrium the flux 
Richardson number R, reaches a critical value of 0.15 (Ellison 1957). Then, Osborn 
(1980) estimates the buoyancy flux as 

( S I P )  pw < 0.20s. (25)  

The value 0.20 proposed by Osborn (1980) agrees well with recent oceanographic 
estimates by Oakey (1982) and Gregg et al. (1986) and laboratory experiments where 
the Richardson number Ri is near a critical value of 0.25 (Rohr & Van Atta 1987). 

Eddy diffusivity models have been used by Weinstock (1978) and Pearson et al. 
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(1983) to estimate the buoyancy flux. Weinstock (1978) analytically derived the 
vertical turbulent diffusion coefficient K ,  for a high-Reynolds-number stably 
stratified turbulent flow, i.e. with an inertial subrange. The derived value of K,  as a 
function of the kinetic energy dissipation rate 6 and the Brunt-Vaisala frequency N 
is 

K, w 0.81 (€IN2). (26) 

( g / p )  p w 0.816. - (27 1 

Equation (26) can be rewritten in terms of the buoyancy flux as 

Weinstock (1978) noted that his derivation for the vertical diffusion coefficient K ,  is 
‘ quite general for stable stratification because it does not depend on the mechanism 
of turbulent production nor an assumed value of the Richardson number ’. In fact the 
only restriction in Weinstock’s derivation is the assumption of the existence of an 
inertial subrange and that only scales in this subrange contribute to the vertical 
turbulent diffusion. Consequently, this derivation may not be valid for low- 
Reynolds-number flows such as the ones obtained in laboratory experiments. 

Comparisons between the buoyancy flux directly measured by SHV and IHV in a 
stratified water channel a t  small Reynolds numbers and (27) applied to the same 
data show that Weinstock’s expression for the vertical turbulent diffusivity 
overestimates the buoyancy flux by a factor of 4-5. The discrepancy between the 
constant in (25) and (27) has yet to be explained. 

Pearson et al. (1983) developed a statistical model for the particle displacement 
and vertical diffusion in a stably stratified turbulent flow. They assumed the 
turbulence to be statistically stationary and homogeneous, conditions similar to our 
laboratory experiments, and concluded that for stable flows the buoyancy flux could 
be approximated as 

where y is a measurable parameter. Pearson et al. (1983) do not say how to determine 
y but report values ranging from 0.1 and 0.4 for several measurements in the 
atmospheric surface layer. It appears that the parameter y is a function of the 
stratification, or equivalently a function of the ratio between buoyancy and inertial 
forces. Therefore (28) can only provide an order of magnitude estimate for the 
buoyancy flux. If one assumes that the buoyancy scale L, = w’/Nis equivalent to the 
Ozmidov scale (see IHV) then (28) can be rewritten as 

( g / P )  p = YWf2N, (28) 

Therefore the parameter y can be thought of as being proportional to the mixing 
efficiency. Rohr et al. (1984) showed that for a decaying stratified turbulent flow with 
a uniform mean velocity the mixing efficiency of the flow was a strong function of the 
ratio between inertial and buoyancy forces. The measured values of the mixing 
efficiency varied between 0.1 and 0.2 for a buoyancy-influenced turbulent flow. This 
result implies that Osborn’s (1980) choice of an average mixing efficiency (or 
equivalently y) of 15 % would provide a reasonable estimate of the buoyancy flux in 
most cases. 

Figure 1 shows the correlation coefficient (normalized buoyancy flux) versus 
normalized downstream distance from the grid for the two stratifications of 
experiment R53. The maximum of about 0.4 in this correlation coefficient occurs 
shortly after the onset of buoyancy effects as noted previously by SHV and IHV. A t  
that point the vertical eddy diffusivity is K, w 0.186. Direct numerical simulations 
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for R53; (a )  N = 0.91 s-'; ( b )  N = 0.65 s-'. 

(Riley, Metcalfe & Weissman 1981; MBtais 1985) imply that, after the first zero 
crossing, the buoyancy flux oscillates between negative and positive values with a 
period equal to the buoyancy period. Larger x/M-values would be needed to resolve 
and characterize this oscillatory behaviour of the buoyancy flux around zero after 
the first zero crossing. The maximal value reached by the correlation coefficient 
p / p ' w '  seems to be a function of the Prandtl or Schmidt number (depending on the 
stratification agent). Experiments in wind tunnels where differential heating 
produces the density gradient (Sirivat & Warhaft 1983; Lienhard 1988) show a 
maximum correlation value of 0.70. 

5.2. Spectral distribution of the buoyancy $ux 
Both dissipation-rate and eddy-diffusivity models for the buoyancy flux can, a t  best, 
estimate its order of magnitude but cannot tell us which scales are contributing to 
the vertical mixing. It has been suggested (Stewart 1969) that only the small 
turbulent scales produce any vertical mixing ( ( g / p )  pw > 0) and that some 
restratification ( ( g / p ) p w  < 0) could occur a t  larger scales. 

Figure 2 shows a comparison of the buoyancy flux cospectrum with the energy 
spectra and the dissipation spectra for two stations of figure 1 ( a )  ( x / M  = 5 and 20, 
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respectively of R53). All spectra are one-dimensional as defined in $4. The original 
measured frequency dependence ( f )  has been transformed into a longitudinal 
wavenumber dependence ( k ,  = 27cfll.7) with Taylor’s assumption of a frozen 
turbulent field : 

(30) 
rl 

4, J k l )  = G E Z ,  ,(f 

where 0 is the mean speed of the flow. 
Near the biplane grid (R52 and R53), the turbulence is nearly isotropic and 

buoyancy effects are dynamically unimportant (see SHV and IHV). SHV’s 
comparisons between the vertical velocity spectrum Ew,  and the corresponding 
spectra computed from the longitudinal velocity spectrum EU,* (see (31) in $6) 
showed that the anisotropy is confined to low frequencies (large scales), The initial 
ratio between the turbulent intensities u’/w’ x 1.15 is comparable with wind tunnel 
measurements. The observed degree of anisotropy of the turbulence field in the 
UCSD water channel is acceptable considering the limitations of the facility, which 
does not include any contraction section similar to the one used in wind tunnels 
(Comte-Bellot & Corrsin 1966). The dissipation spectrum of the longitudinal velocity 
k iEu ,u(k l ) ,  shown in figure 2(iii), peak at about I 0  Kolmogorov scales L,, in good 
agreement with atmospheric turbulence measurements and moderate to high 
Reynolds number laboratory experiments (Yeh & Van Atta 1973; Champagne 1978). 
For both x/M locations shown in figure 2, the lengthscales containing the turbulent 
kinetic energy appear to generate most of the buoyancy flux. I n  addition, lengthscales 
below the dissipation peak, which is usually taken to be the viscous cutoff 
wavenumber, contribute as much as 10% of the buoyancy flux. The relative 
contribution of specific wavenumber bands is better visualized when the velocity and 
dissipation spectra and the buoyancy flux cospectrum of figure 2 are plotted in 
variance-preserving coordinates, figure 3, with a logarithmic wavenumber or 
frequency axis. The variance-preserving coordinate system is the best coordinate 
system to compare the range of scales or frequencies contributing to different spectra 
as shown in figure 3. The one drawback of this coordinate system is that it shifts the 
wavenumber of the spectrum peak to higher values. The amount of this shift is highly 
dependent on the slope of the spectrum near the peak wavenumber. For the data of 
figures 2 and 3, the peak of k,  E,, is located a t  approximately 18L,, compared with 
the peak of Ep,w occurring at 30L,. 

in variance- 
preserving coordinates which emphasize the midwavenumbers which contribute the 
most to the flux. A similar behaviour in the buoyancy flux spectrum was observed 
for the data sets of SHV and IHV. The cospectra Eu, and E,, corresponding to the 
two decays of figure 1 are essentially zero except near the grid ( x / M  < lo), where the 
distinct wakes of the grid rods may still be significant. 

Two important results can be obtained by comparing the values of the buoyancy 
flux (g /p)pw of figure 1 and their spectral contents shown in figure 4. The first result, 
that was alluded to by IHV, concerns the verification of SHV’s assumption that a 
zero buoyancy flux (g /p)pw means that no vertical mixing takes place. It is 
remarkable and satisfying to find that, when the buoyancy flux goes to zero, its 
spectrum becomes identically zero across all wavenumbers. This is an important 
finding, since ( g / p ) p  = 0 only implies that the sum of the cospectrum estimates 
over all wavenumbers will be zero. This result supports SHV’s and IHV’s earlier 
assumption that a buoyancy flux (g /p)pw going to zero meant the suppression of 
turbulent mixing a t  all scales. It should be noted that this result is not universal, but 

Figure 4 shows the buoyancy flux spectral distribution k, Ep,  
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FIGURE 4. Spectral content of the buoyancy fluxes shown in figure 1. All the data are from ;the 
two decays of R53; (a) N = 0.91 s-'; (b)  N = 0.65 s-l. 

appears to depend on the value of the Prandtl or Schmidt number. Recent 
measurements in stratified wind tunnel (Lienhard 1988) show that, in a turbulent 
flow with low Prandtl number (Pr = 0.71, a counter-gradient transport occurs at the 
largest scales, suggesting partial restratification, while active vertical mixing 
continues at the small scales ( ( g / p ) p w  > 0). Additional experiments with different 
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Experiment M (cm) 

R37 3.810 
( I m  3.810 
R52 1.905 

( I m  1.905 
1.905 

R53 1.905 
1.905 

R64 3.810 
3.810 

N (s-l) LPe.dLK L,,,/L, 
0.93 19.0 3.50 
0.74 18.2 3.30 
0.93 18.0 2.50 
0.73 19.0 2.45 
0.50 20.0 2.45 

0.91 18.0 2.36 
0.65 16.5 2.25 

0.90 18.9 3.40 
0.64 19.1 3.20 

TABLE 2. Relationship between the Kolmogorov scale L,, the scale at which k, E(p, w) peaks, L,,,,, 
and the smallest scale contributing to the buoyancy flux, L,,,, for various stratifications Nand grid 
mesh sizes M 

Prandtl numbers, like a thermally stratified water channel, are needed to resolve the 
Prandtl-number effects. 

Both present and past UCSD experiments (e.g. SHV and IHV) have only one 
external source of turbulent kinetic energy, i.e. the grid. In  oceanic and atmospheric 
flows, complex internal wave fields can act as a source or sink of kinetic energy. 
Therefore, there might be situations where mixing (k, Ep,w > 0) occurs a t  the smallest 
scales and restratification (k, E,,, < 0) occurs a t  the largest scales resulting in a zero 
net buoyancy flux. Holloway (1983) has also argued that, besides the turbulence, 
nonlinear internal wave interactions can produce a positive buoyancy flux. 

The second important result that can be derived from the spectral content of the 
buoyancy flux (e.g. figure 4) is the relationship between the Kolmogorov scale L,  and 
the lengthscale at which k ,E , , ,  is maximum and the smallest lengthscale 
contributing to the buoyancy flux. The results from several experiments are 
summarized in table 2. It is important to notice that scales twice the traditional 
viscous cutoff of IOL, contribute to most of the vertical mass flux. The large energy- 
containing scales (of the order of L,) are responsible for creating large local density 
gradients by bringing fluid particles of different densities into contact. Then, the 
viscous scales can smear out these sharp gradients and produce the actual mixing. 
Independently of the grid mesh size, k ,  E,,, , is maximal a t  Lpesk w 18.5LK, while the 
smallest scale Lmin contributing to the buoyancy flux appears to depend on the scale 
of the forcing (in this case the grid mesh size). Lmin is 2.4L, for M = 1.905 cm and 
3.4LK for M = 3.81 cm. This grid Reynolds-number dependence is very similar to the 
one noted in ( 5 )  between Lo and L,  by IHV. In fact, within experimental 
uncertainties, Lmin is one-third of the Ozmidov scale Lo a t  the downstream location 
where ( g / p ) p w  goes to zero. 

6. Velocity and density one-dimensional energy spectra 
The evolution of the longitudinal and vertical velocity energy spectra behind the 

vertical rods with stable stratification (R64) is shown in figure 5. The arrow near the 
lower left corner of figure 5 denotes the Brunt-Vaisala frequency fN = 0.14 Hz (or 
corresponding wavenumber k, = 0.03 cm-') below which a saturated two-dim- 
ensional internal wave field of slope k-2 develops as the kinetic energy of the large 
turbulent scales is converted into potential energy by the buoyancy forces. A 



434 E .  C. Itsweire and K .  N .  Helland 

10' 

lo-' 

10-3 

10-4 

10-5 
lo-* lo-' 1 0' 10' 

k ,  (cm-') 

lo-' 

E,, , (cm3 SP) 

10-9 

10-4 

10-5 

10-0 10-1 1 0 0  10' 
k ,  (cm-I) 

FIGURE 5. Evolution of the velocity power spectra Eu, and Em, for the first decay (N = 0.90 
s-I)  of R64: (a )  longitudinal velocity u ;  ( b )  vertical velocity w. 

substantial internal wave field was observed below the Brunt-Vaisala frequency in 
experiment R64 where a set of vertical rods was used instead of a biplane grid (SHV, 
IHY). This finding suggests that, in the UCSD water channel, most of the internal 
waves are generated by the ten interacting jets of the inlet section rather than by the 
wakes of the horizontal rods in the grids (the vertical rods do not excite internal 
waves very efficiently). 
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FIQURE 6. Comparison between the measured vertical velocity power spectrum Ew, and the 
transverse velocity power spectrum Ev, computed from the longitudinal velocity power spectrum 
Eu, using the isotropic relationship of (13). Data are from : (a) R64, N = 0.90 s-l, x / M  = 10 and (b)  
R53, N = 0.91 s-', x / M  = 10. 

Before the onset of buoyancy effects ( z /M = 10) both velocity spectra exhibit the 
classical shape of low-Reynolds-number, grid-generated turbulence as observed 
previously by SHV and IHV. A higher anisotropy due to asymmetry of the vertical 
rods occurs at the lowest freqdencies or equivalently at the largest scales as shown 
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probe ( - 3  dB point) occurs at 25 cm-' as noted by the vertical arrow. 
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FIGURE 8. Evolution of the density power spectra k, E,,p in area-preserving coordinates for R64, 
N = 0.90 s-l. Note the constant spectral level for x /M = 60 between the vertical arrows. 

in figure 6 where the transverse velocity power spectrum Ev,v  has been computed 
from the longitudinal velocity power spectrum Eu* using the isotropic relationship : 

As seen in figure 6 (a), the main effect of using vertical rods instead of a biplane grid 
is to reduce the amount of vertical kinetic energy by a factor of 2 a t  wavenumbers 
less than 4 cm-l. In  contrast very little suppression of the low-wavenumber part of 
Ew, is observed behind the small mesh size grid of R53, as shown in figure 6 ( b ) .  The 
observed difference a t  the highest wavenumbers between Ev, and Ew, is typical of 
low-Reynolds-number, grid-generated turbulence. 

After the suppression of the buoyancy flux (g /p )pw(x /M > 50) the longitudinal 
velocity power spectrum Eu, tends roughly towards a k-2.4 shape as in figure 5.  This 
spectral behaviour is rather different from the k-3 to k-4 predicted by theories of two- 
dimensional turbulence. No strong evidence of two-dimensionality can be inferred 
from the shape of the vertical velocity energy spectrum Ew, or the density energy 
spectrum Ep,p. (figure 7). If the buoyancy-dominated turbulence were nearly two- 
dimensional (in quasi-horizontal sheets or layers) both w and p should behave as 
passive scalars in horizontal planes. Then, their spectra would approach k-' a t  high 
wavenumbers. The vertical velocity energy spectra E,, tends to go as k-2 while the 
density power spectra Ep,p approaches k-'. I n  one case (R64) there is a small k-' 
range between 5 cm-' and the conductivity probe roll-off (22.5 cm-', marked by an 
arrow in figure 7) a t  the farthest downstream location (x /M = 60). This k-' range 
observed a t  x /M = 60 of R64 occurs between wavenumbers k = 60 and 160 cm-', 
shown by arrows on figure 8. The linear vertical axis of figure 8 shows that the 
spectral level of k,E, , ,  between these wavenumbers varies by less than 5 % ;  a 
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confirmation that i t  is real. This k-' range has not been consistently observed in all 
the previous UCSD stratified experiments. Stillinger (1981) observed i t  behind the 
small-mesh-size grid (M = 1.905 cm), but IHV did not see any strong evidence for a 
k-' range in the density spectra of either of their two grids. 

It should be noted that the spectral shapes predicted by two-dimensional 
turbulence theories apply to two-dimensional spectra rather than the experimentally 
measured one-dimensional power spectra. The transformation formula to go from the 
two-dimensional energy spectrum E( k) to  the one-dimensional velocity spectrum 
EU, U(kl)  (Ogura 1952), where k is the three-dimensional wavenumber : 

or vice versa (Hama 1953) : 

E(k) = -2k3g[kJr  (33) 

are very complex compared with the three-dimensional to one-dimensional 
relationships because of the reduced symmetries. The corresponding three- 
dimensional to one-dimensional transformations were derived by Heisenberg (1948) : 

and Lin (1948) : (351 

The present spectral data were not'smooth enough to successfully apply (33) to the 
one-dimensional spectra. No high-resolution numerical simulations of two-dim- 
ensional turbulence are available to show if the slopes of the one- and two- 
dimensional spectra are significantly different. It should be feasible to investigate the 
effects of these transformations between one- and three-dimensional spectra using 
empirical, models spectra ; our limited attempts a t  this were not successful, and 
numerical computations starting from either a one- or two-dimensional spectrum did 
not yield convincing results. 

However, buoyancy-dominated turbulence in stratified flows like the present 
experiments should not be expected to be fully two-dimensional for a number of 
reasons, such as facility limitations, Reynolds-number effects and internal wave- 
turbulent interactions. First, the physical dimensions of the UCSD water channel 
and the low Reynolds number do not allow for a wide separation between the energy- 
containing eddies and the viscous scales, meaning that viscous effects are always 
important even as the dissipation rate becomes small. The three-dimensional 
boundary layers on the sidewalls and bottom of the channel could be a sizeable 
source of production of three-dimensional turbulence a t  stations downstream of the 
grid where the original grid-generated turbulence has decayed. 

As pointed out by a referee, quasi-two-dimensional eddies rotating in approxi- 
mately horizontal planes may exist a t  different elevations in the late stages of the 
flow, and if the eddies are out of phase with each other, they could induce significant 
vertical shear (and motions) for the life of the eddies. 

Second, and perhaps more important, is the possibility that an initially nearly 
isotropic, moderate-Reynolds-number turbulent flow subjected to  strong buoyancy 
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forces will lose too much of its kinetic energy to potential energy and dissipation to 
be able to sustain large two-dimensional eddies. This conclusion is supported by the 
results of a direct numerical simulation (0. MBtais, personal communication, 1987) 
with similar initial conditions and turbulent Reynolds number. These simulations do 
not show any clear evidence of two-dimensional turbulence for large decay times (up 
to ten Brunt-Vaisiila periods). 

Finally, vertical internal wave motions could significantly alias single-point 
Eulerian measurements far from the grid, where internal waves have been shown to 
be the major contributor to vertical kinetic energy (IHV). One could imagine two- 
dimensional motions confined in quasi-horizontal sheets, subject to vertical 
displacements and distortion by internal waves. In  this case, the appropriate way to 
measure the spectra would be to either decompose the velocity field into a wave and 
a vortex component (vertical vorticity) or suppress the internal wave field. Such a 
wave-vortex decomposition is probably not possible in the laboratory and can only 
be achieved in direct numerical simulations. Recent numerical simulations of 
stratified flows (MBtais & Herring 1985) show the dominance of the wave-vortex 
interaction over the vortex-vortex interaction when the initial flow is entirely a 
random wave field. The developing vortex-vortex interaction (in the vertical 
direction) has the characteristics of two-dimensional turbulence. Unfortunately 
MBtais & Herring (1985) do not show what the total velocity spectrum looks like. 

7. Longitudinal velocity bispectra 
If the collapsing, buoyancy-dominated turbulence becomes nearly two-dimen- 

sional, the third-order spectrum or bispectrum, a quantity important for the 
estimation of the energy transfer, may change shape. Bispectra of the longitudinal 
velocity are defined in terms of the Fourier transforms of the third-order temporal 
(or spatial, along the direction of the mean flow, when using Taylor's hypothesis of 
frozen turbulence) correlations. The bispectrum for the longitudinal velocity 
component u has been defined in $4. This bispectrum can be related to the inertial 
term in the evolution equation of the longitudinal component of the turbulent kinetic 
energy in the following manner. Under the experimental conditions in the UCSD 
water channel, the equation for the evolution of the longitudinal turbulent velocity 
derived from the Navier-Stokes equations can be approximated by 

In  three-dimensional turbulence, the second to fourth terms of the equation are three 
of the nine inertial terms contributing to intercomponent transfer of turbulent 
kinetic energy between different wavenumbers. When the turbulence is isotropic, 
these nine terms sum to zero. In two-dimensional turbulence (in an (x, 9)-plane), the 
fourth term in (36) is zero and only four inertial terms contribute to the 
intercomponent energy transfer. 

Then 

= -rm l+ (k, +ki) Im [B,, u, %(k1, k;)] dk, dk;. 
-0, 

(37) 
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FIGURE 9. Evolution of the imaginary part of the longitudinal velocity bispectra (k,+k;)Im 
Bu,u, ,,(k1, ki) for (a) the unstratified decay (R65), x / M  = 20; and (bd) the stratified decay (R64) : ( b )  
x / M  = 10; (c )  x / M  = 30; (d )  s / M  = 60. Units for the bispectra are cm3 s - ~ .  

For both experiments R64 and R65, 50 records and frequency averaging squares 
2.5 Hz (or 0.0625 emu1) wide provided both good spatial resolution and reasonable 
statistical smoothing of the bispectral estimates. Each averaging square contained 
1600 points whose bispectral values were averaged together over 50 records to yield 
one bispectral estimate at the midpoint of the averaging square. The statistical 
resolvability, or ratio of the bispectrum to its local standard deviation, was 3 to 6 for 
the imaginary part, and less than 3 for the real part of the bispectrum. This result 
is consistent with previous wind-tunnel measurements (Helland et al. 1979) that had 
a very steady low-intensity turbulent flow, and thus a large number of averaging 
records (200) could be gathered. Earlier computations with 24 records (R53) showed 
inadequate resolution (resolvability less than 3 for the imaginary part) of the 
bispectral estimates. A low resolvability for the real part of the bispectrum should be 
interpreted to mean that the real part is statistically not distinguishable from zero. 

The imaginary parts of the bispectra estimated from measurements taken behind 
the vertical rods without stratification (R65 : x /M = 20) and with stratification (R64 : 
x/M = 10, 30 and 60) are shown in figure 9. Only the imaginary part of the 
bispectrum has physical significance for the measurements discussed herein. The real 
part of the bispectrum should be zero if the motions are isotropic; non-zero 
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otherwise. The bispectra computed for the unstratified experiment (R65) were 
similar to bispectra of isotropic grid turbulence (Helland et al. 1979; Helland & 
Rosenblatt 1982 ; Itsweire & Van Atta 1984) ensuring that no peculiarities due to the 
experimental set-up were present. The same held true for the bispectrum a t  x /M = 
10 in the stratified experiment (R64), since a t  that  location the buoyancy effects were 
negligible, and the turbulence was nearly isotropic. 

The bispectra shown in figure 9 have been multiplied by the sum of the two 
wavenumbers ( k ,  + k; )  in order to obtain the appropriate bispectrum for the one- 
dimensional energy transfer estimates of the following section (see (22) and (23)). 
This coordinate system also emphasizes the contributions of the midwavenumbers. 
Identical vertical scales were chosen in figure 9, albeit with opposite signs for the last 
two panels, in order to facilitate the comparison between downstream locations. 
Near the grid (figures 9 a  and 9 b ) ,  the imaginary part OfB,,,,, was mostly negative, 
with a broad peak centred around the zero wavenumber. Wavenumbers below 
20 cm-' contributed to the peak. The negative sign of the bispectrum corresponds to 
an energy cascade from the large scales to the small scales. Where buoyancy affects 
the dynamics of the large scales of the turbulent flow ( x /M = 30, figure 9c)  a reversal 
in the sign of the bispectrum is observed, indicative of a major change in the energy 
cascade. Further downstream, where the buoyancy flux has gone to  zero and very 
little vertical mixing occurs ( z / M  = 60, figure 9d),  the bispectrum is entirely positive, 
with enhanced contributions from larger wavenumbers. The amplitude of the 
bispectrum continuously decreases with increasing downstream distance from the 
grid. As the turbulent kinetic energy decreases, less energy can be transferred among 
scales. The large values of the bispectrum near either wavenumber axis might be an 
indication of a strongly non-local energy transfer (Herring 1980). 

8. One-dimensional energy transfer 
Even though the second-order spectral properties of the collapsed turbulence do 

not appear to be close to  those of two-dimensional turbulence, the collapsed 
turbulence might still have some of the same properties. One notable property of 
two-dimensional turbulence is the reverse energy cascade observed in direct 
Navier-Stokes simulations such as those by Herring et al. (1974). In order to 
investigate the possibility of reverse energy cascade from the small scales to the large 
scales, estimates of the one-dimensional spectral energy transfer have been made a t  
various stages of the turbulence decay following a method originally outlined by 
Wilson (1974) and adapted by Van At ta  (1979). Our approach is slightly different 
fom Wilson's, but the final results are the same. Details of his procedure and how his 
derivations can be interpreted in terms of local and net energy transfer are given in 
Appendix B. 

Equation (23) in $ 4  gives the algorithm for computing this one-dimensional energy 
transfer term from the bispectrum of the longitudinal velocity component u. That 
algorithm required for computing S(k  ; 1)  from this equation involves some 
interpolations since the combinations of wavenumbers expressed in (23) did not 
coincide with the discrete set of computed bispectral points, Positive values of S(k; 1 )  
indicate a net transfer from k to T ,  while negative values show a net loss of energy 
from I to k. The cusp-like features in many of the S(k; &curves near L z I are caused 
by finite-sample (record)-length limitations. This can easily be seen by examining 
(23) and noting that S ( k ;  1 )  always requires that at least one term be evaluated near 
a wavenumber axis ccAk when k z 1. This was confirmed by using a simple analytical 
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FI~URE 10. Evolution of the one-dimensional longitudinal energy transfer term S(k; 1) in area- 
preserving coordinates for a set of wavenumbers l .  The energy transfer terms were computed from 
the longitudinal velocity bispectra data of figure 9. Shown are (a )  the unstratified decay (R65), x /M 
= 20; and ( 6 4  the stratified decay (R64): (6) x / M  = 10; (c) x / M  = 30; ( d )  x /M = 60. 
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FIGURE 11. Area-preserving plots of the one-dimensional net energy transfer term T,(l) computed 
from the longitudinal velocity bispectra data of figure 9. Shown are (a )  the unstratified decay 
(R65), x / M  = 20; and ( b 4 )  the stratified decay (R64): ( b )  x / M  = 10; (c) x / M  = 30; (d )  x / M  = 60. 
Notice the sign reversal when the turbulence is buoyancy-dominated (c) or has been suppressed (d).  

representation of a bispectrum (with well-defined near- and on-axis values) and then 
computing corresponding S(k  ; I )  values. 

The results for the stratified experiment (R64) of figure 10 show that near the grid 
(x /M = lo), the energy is being transferred from small to large wavenumbers. This 
is the traditional result for three-dimensional turbulence as shown for the unstratified 
decay of figure lO(a) (R65, x / M  = 20) and other isotropic turbulence experiments 
(Van Atta 1979; Itsweire & Van Atta 1984). After the onset of buoyancy effects 
( x /M = 30), the energy transfer reverses and energy is then transferred from higher 
wavenumbers to lower wavenumbers consistent with the behaviour believed to apply 
for two-dimensional turbulence as shown by the net energy transfer calculations T( k) 
of Herring et al. (1974). The observed energy transfer a t  x /M = 30 is weak and could 
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indicate that the turbulence is just becoming more two-dimensional than three- 
dimensional. Further downstream (x/M = go), where no vertical mixing is occurring 
( (g /p)pw = 0), the magnitude of the reverse energy transfer is four times larger. The 
energy transfer is largest a t  the low wavenumbers, which is consistent with a 
vortex-vortex interaction becoming the dominant mechanism (Metais & Herring 
1985). 

The transfer terms S(k  ; 1 )  can be integrated over k for each wavenumber 1 to give 
the one-dimensional net energy transfer T,(Z) as shown in 94. By definition, positive 
values of T, indicate a net gain of energy at wavenumber I ,  while negative values 
show a net energy loss a t  1. Figure 11 shows how T, changes when buoyancy effects 
become important. In  all cases the sharp edges of T, at the lowest wavenumbers are 
artifacts of the numerical calculations caused by the limited resolution of the 
bispectral estimates near the zero wavenumber axes. In  nearly isotropic, three- 
dimensional turbulence (R65, x /M = 20 and R64, x /M = 10, figures l l a  and 11 b 
respectively) the energy cascade is from large to small scales. The energy transfer 
occurs over a broad band of wavenumbers, all the way to 1 = 10 cm-l. When the 
turbulence collapses, the net energy transfer reverses from small to large scales and 
is limited to wavenumbers I < 3 cm-l. The magnitude of the energy transfer is also 
increased several fold. 

9. Conclusions 
Direct measurements of the buoyancy flux in a density-stratified turbulent flow 

show the eddy diffusivity model and dissipation techniques can provide reasonable 
estimates of the buoyancy flux when the turbulence is weakly influenced by 
buoyancy effects. As buoyancy becomes more important, the mixing efficiency of the 
flow, and hence the buoyancy flux and eddy diffusivity, decrease rapidly. The 
spectral representation of the buoyancy flux (g /p)pw,  i.e. the real part of the 
cospectra Ep9 w ,  shows that the smallest scale contributing to the buoyancy flux is 
about three times the Kolmogorov scale L,. When the buoyancy flux (g /p )pw goes 
to zero, the cospectra Ep,w is almost identically zero, indicating that no vertical 
mixing remains at any scales. This result is consistent with the Stillinger et al. (1983 b )  
and Itsweire et al. (1986) use of the buoyancy flux as an indicator for the suppression 
of three-dimensional turbulence. 

After the point of collapse ( ( g / p ) p p  w 0) ,  the flow appears to be a mixture of small- 
scale internal waves (wave modes) and two-dimensional turbulence (vortex modes). 
The slopes of both velocity spectra E,,, and Ew,w are different from the slopes 
predicted by two-dimensional theories of turbulence. Only the density spectra (then 
a passive scalar) approaches the predicted k-'. These differences in spectral shapes 
could be attributed to the large internal wave field present in the UCSD experiments. 
In  their direct numerical simulations of stratified flows, MBtais & Herring (1985) 
showed that, when the initial flow was entirely random waves, the wave energy was 
persistent throughout the evolution of flow, thereby limiting the increase in vortex 
(two-dimensional turbulence) energy. 

Consequently, we turned our attention to  the third-order spectrum or bispectrum, 
thought to be less sensitive to energy transfer among internal waves than within 
turbulent modes, to see if any reverse energy transfer, a characteristic of two- 
dimensional turbulence, took place. McComas & Briscoe (1980) noted that for 
internal waves in the ocean, large (long) internal waves are more energetic but not 
very nonlinear, and small waves are nonlinear, but not very energetic; thus internal 
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waves probably do not contribute much to  t,he bispectrum. This is likely to be the 
case in the laboratory flow as well ; we know from spectral measurements that the 
flow in the late stages of decay is still three-dimensional, but the motions are 
certainly not the strong, overturning, Kolmogorovian turbulent motions typical of, 
say, unstratified grid turbulence. We would expect that statistically significant 
bispectra are a good detector of two- or three-dimensional turbulent motions because 
of the weakness of the contributions from internal waves. It would also be of great 
interest to examine, for comparison, energy transfer along the vertical direction. 

The one-dimensional inertial transfer term S(k  ; 1)  for the longitudinal velocity 
component was computed from the longitudinal velocity bispectrum Bu9 ,, u ( Z ,  m, k) 
and its behaviour suggests that the traditional energy cascade from the large scales 
to the small scales reverses when buoyancy effects dominate the dynamics of the 
flow. The net one-dimensional transfer term T,(Z) also shows the reversal in the 
energy cascade. The shape of the bispectrum also implies that, after the point of 
complete collapse ( ( g / p ) p w  = 0 ) ,  the energy transfer is non-local. These results 
suggest that the collapsed turbulence has some similarity with two-dimensional 
turbulence. More experiments for other velocity components and under various 
conditions are needed to determine the universality of these findings. Direct 
simulations of a similar stratified turbulent flow (MBtais & Herring 1989) imply that 
the initial energy partition between wave and vortex modes could dictate the final 
state of motion of the fluid. 

Preliminary results from this work were presented a t  the Seventh Symposium on 
Turbulence and Diffusion, Boulder, Colorado, November 12-15, 1985. This research 
was supported by the National Science Foundation under Grant OCE82-05946 while 
both authors were a t  the University of California, San Diego. 

Appendix A. Bispectral symmetries 
The bispectral contributions to S ( k ;  1 )  from each type of interaction come from 

three sets of regions in the left half-plane as shown in figure 12. The analytical 
expression for S( k ; 1) is 

There are six distinct regions where the bispectra are related through symmetries 
(Helland et al. 1979; Lii & Helland 1981). The type 1 interactions involves bispectra 
in regions 5 and 6, type 2 interactions have bispectra in regions 3 and 4. Finally, 
bispectra in regions 1 and 2 contribute to the type 1 interaction. The bispectra in the 
lower-right quadrant can be mapped into bispectra defined in the upper-right 
quadrant. 

Consider the type 1 interaction first. From Lii & Helland (1981, table 1)  a 
bispectrum in region 5 can be mapped into a bispectrum in region 2 as follows: 

B,(A,, A,) = B,(A,, -A ,  - 4 L  (A 2) 

where the subscript i of B, refers to the wavenumber region of interest. If we make 
the identification that A, = 1 and A, = -m, m = I+ k we can write 

B6(Z, -m) = B2(Z, -Z+m) = B2(Z, k). (A 3) 
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m 

I k + + m  

FIGURE 12. Summation domain for S(k;Z) .  

Bispectra in region 6 can be mapped into region 2 using the same relationship: 

B,(A,,A,) = B,(-A,-A,,A,) = B,(A,, -A,-A2). 

B6(Z, - m )  = Bl(Z, k). 

(A 4) 

(A 5 )  

Again making the identification A, = 1 and A, = - m, m = 1 + k we can write 

A similar mapping can be used for the bispectra contributing to the type 2 
interactions following Lii & Helland (1981) : 

B,(h,, A,) = B:(A,+A,, -4). 

B.JZ, -m)  =B,*(Z-m, +m)  =B,*(k,Z-k). 

B4(Z, - m )  = B,*(Z-m, + m )  = Br(k ,  I - k ) .  

(A 6) 

(A 71 

Again making the identification A, = Z and A, = - m, m = 1- k we can write 

Finally bispectra in region 4 can be mapped into region 1 using the same 
relationship : 

(A 8) 

These new transformations for expressing the bispectra in the fourth quadrant in 
terms of bispectra in the first quadrant (where computations are simpler and faster) 
can be substituted in (A 1) to get a new expression for S(k ; l ) :  

The expression (A 9) is an operational definition for S ( k  ; 1). 
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Appendix B. Re-examination of Wilson (1974) and Van Atta (1979) 
analyses 

This Appendix re-examines the Fourier analysis of Wilson (1974) and Van Atta’s 
(1979) derivations of X ( k ;  I ) .  We shall show that the end results are the same as those 
obtained in $4 and are therefore independent of the type of Fourier decomposition 
used for the velocity field. This result comes to no surprise, but the relationships 
between the Wilson terms and the quadrant mapping of the bispectrum are 
somewhat involved. 

Wilson (1974) chose to write the Fourier series representation of u ( x ,  t )  as 

(B 1) 
‘k u ( x )  = C -sin ( k x + 0 , ) ,  k = 0 , 1 , 2 , .  . . , n- 1 ,  

k k  

where 0, is the phase angle. By expanding the sinus of the sum of two angles, we can 
rewrite (B 1)  in a more usual Fourier series of real coefficients: 

I ck sin 8, cos kx + - cos 0, sin kx 
k k 

= 2 [Ak cos k x + B ,  sin k z ] ,  (B 2) 
k 

where A ,  = ( C , / k )  sin 8, and B, = ( C , / k )  cos 0,. If we rewrite the complex Fourier 
coefficients of (7)  in terms of real and imaginary parts: F,(k) = a,+ib,, it is easy to 
show that A ,  = 2Aka, and B, = 2Ak6,. 

Wilson (1974) showed that, within a scale factor, the inertial term of the evolution 
equation of the individual components resulted from three types of interactions 
among triads of wavenumbers : 

cos (0, -em + 0,) for m = 1 + k ,  (B 3a) 

cos(0,-8,-0,) for m = I -k ,  (B 3 b )  

- ‘ 1  ‘m ‘k 

41m Type 1 

- ‘l cm Ck Type 2 
41m 

c0s(8,+8~-8,)  for m = k-1. (B 3c) 
+ l m k  c c  C 

41m Type 3 

Let’s consider the Type 1 interaction defined by (B 3a) .  I ts  cosine term can be 
expanded as follows : 

cos (0, - 0, + 0,) = cos 0, cos 8, cos 8, + cos 8, sin 8, sin 8, + sin 0, sin 8, cos Ok 

-sin cos 0, sin O,, (B 4) 
so that the Type 1 term can be rewritten as 

1 C C m  C, . C m  C C‘ 
1 m 1 m 1 WL 

+ 1 cos 0, - sin Om c k  sin 8, +-sin 8, - sin 8, Ck cos 8, - J sin el 2 cos Om C, sin 8, 
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We can now substitute the A and B from (B 2) to get 

- ‘ 1  ‘m ck cos (0, -8, + 0,) = -ak[B,B,B, +B, A, A ,  +A, A ,  B,-A, B, A,]. 
41m 

(B 6 a )  
Similarly the Type 2 and Type 3 terms can be written as 

(B 6 b )  

cOs(8,+8,-8,) = ~ k [ B ~ B , B k + B ~ A , A ~ - A ~ A , B ~ + A , B , A k ] .  ‘ 1  cm ck 

+ 41m 

(B 6c)  

Now that we have expressions for the three types of interactions terms from the 
Wilson analysis (1974), we need to relate them to the bispectrum as it is computed 
by the complex Fourier transform analysis of $4. Consider the complex bispectrum 

Bu, u ,  U ( L  --m, k) = F U ( 4  F,( -m) F,(k) = F U V )  q m )  F u ( k )  

= (a, + ib,) (a ,  - ibm) (a,  + ibk). (B 7 )  
After expanding the three products and collecting real and imaginary parts, (B 7)  
becomes 

B,, ,, u ( l ,  -m, k) (a, a ,  a, -k b, b, -b, a ,  bk + a, b, bk) + i(b, a,  Uk - a, bm U k  

+ a ~ a m b k + b ~ b m b k )  (B 8a)  

Similarly, we have 

B,, u ,  u(l, -m, - k) = (a ,  a, a, + 6 ,  b,a, + b, a ,  bk-al b, b,) + i(b, a, a,-a, 6,  uk 
am bk-b l  bnz b k )  (B 8b)  

and 

BU,,,,(l,m, -k) = (ula,Uk-b,b,U,+b,U,b,+U, b,b,)+i(b~U,U,+U,b,Uk 
- U , a ,  bk+ b, b, bk).  (B 8 c )  

We now want to compare the results of expanding the three bispectra of (B 8a-c) 
to the expansions of the Wilson transfer terms of (B 6a-c). With the relationships 
between the various Fourier coefficients, we get 

cl ‘rn ‘k cos(0,-0,+0,) = -2(Ak)3kIm[B,,,,u(Z, - m , k ) ] ,  (B 9a)  

Type 1 
- 

41m 

where l -m+k=Ogivesm=Z+kwith k > 0 .  

cos(8,-8,-8,) = +2(Ak)3kIm[B,,u,u(1, -m, -k)] (B 9 b )  
Type - C,C,Ck 

4Zm 

where 1-m-l= 0 gives m = l - k  with k < 1. 

Type 3 ‘ ‘ 
c 0 s ( 8 , + 0 , - 0 ~ )  = +2(Ak)3kIm[B,,u,,(l,m, -k)], (B 9 c )  

+ “Zl 
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where 1 i- m - k = 0 gives m = k - 1 with k > 1. Therefore the three interaction terms 
of Wilson (1974) are the terms contributing to the one-dimensional transfer terms 
S ( k ;  I )  within a scaling factor of 2(Ak)3 .  While the two representations are equivalent, 
the Fourier series formulation requires the computation of the three transfer terms 
from a complex, fast Fourier transform using the A and B of (B 6) directly during the 
averaging process as Wilson did in his analysis. If instead, the averaged, complex 
bispectrum is computed first, then onc cannot escape the use of the symmetry 
mappings defined in Appendix A, unless, of course, the complex bispectrum is 
computed for the full right half-plane. 
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